We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
kernelTan
[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]
Compute the [tangent][tangent] of a double-precision floating-point number on
[-π/4, π/4]
.
bash
npm install @stdlib/math-base-special-kernel-tan
javascript
var kernelTan = require( '@stdlib/math-base-special-kernel-tan' );
#### kernelTan( x, y, k )
Computes the [tangent][tangent] of a double-precision floating-point number on [-π/4, π/4]
.
javascript
var out = kernelTan( 3.141592653589793/4.0, 0.0, 1 );
// returns ~1.0
out = kernelTan( 3.141592653589793/6.0, 0.0, 1 );
// returns ~0.577
out = kernelTan( 0.664, 5.288e-17, 1 );
// returns ~0.783
If k = 1
, the function returns tan(x+y)
. To return the negative inverse -1/tan(x+y)
, set k = -1
.
javascript
var out = kernelTan( 3.141592653589793/4.0, 0.0, -1 );
// returns ~-1.0
If either x
or y
is NaN
, the function returns NaN
.
javascript
var out = kernelTan( NaN, 0.0, 1 );
// returns NaN
out = kernelTan( 3.0, NaN, 1 );
// returns NaN
out = kernelTan( NaN, NaN, 1 );
// returns NaN
x
and y
).
- As components of a [double-double number][double-double-arithmetic], the two [double-precision floating-point numbers][ieee754] x
and y
must satisfy
ulp
stands for [units in the last place][ulp].
javascript
var linspace = require( '@stdlib/array-base-linspace' );
var binomial = require( '@stdlib/random-base-binomial' ).factory;
var PI = require( '@stdlib/constants-float64-pi' );
var kernelTan = require( '@stdlib/math-base-special-kernel-tan' );
var x = linspace( -PI/4.0, PI/4.0, 100 );
var rbinom = binomial( 1, 0.5 );
var descr;
var i;
var k;
for ( i = 0; i < x.length; i++ ) {
k = rbinom();
descr = ( k === 1 ) ? 'tan(%d) = %d' : '-1/tan(%d) = %d';
console.log( descr, x[ i ], kernelTan( x[ i ], 0.0, k ) );
}
c
#include "stdlib/math/base/special/kernel_tan.h"
#### stdlib_base_kernel_tan( x, y, k)
Computes the [tangent][tangent] of a double-precision floating-point number on [-π/4, π/4]
.
c
double out = stdlib_base_kernel_tan( 3.141592653589793/4.0, 0.0, 1 );
// returns ~1.0
out = stdlib_base_kernel_tan( 3.141592653589793/6.0, 0.0, 1 );
// returns ~0.577
The function accepts the following arguments:
- x: [in] double
input value (in radians, assumed to be bounded by ~pi/4
in magnitude).
- y: [in] double
tail of x
.
- k: [in] int32_t
indicates whether tan(x+y)
(if k = 1
) or -1/tan(x+y)
(if k = -1
) is returned.
c
double stdlib_base_kernel_tan( const double x, const double y, const int32_t k );
x
and y
).
c
#include "stdlib/math/base/special/kernel_tan.h"
#include <stdio.h>
int main( void ) {
const double x[] = { -0.7853981633974483, -0.6108652381980153, -0.4363323129985824, -0.26179938779914946, -0.08726646259971649, 0.08726646259971649, 0.26179938779914935, 0.43633231299858233, 0.6108652381980153, 0.7853981633974483 };
double out;
int i;
for ( i = 0; i < 10; i++ ) {
out = stdlib_base_kernel_tan( x[ i ], 0.0, 1 );
printf( "tan(%lf) = %lf\n", x[ i ], out );
}
}
@stdlib/math-base/special/kernel-cos
][@stdlib/math/base/special/kernel-cos]: compute the cosine of a double-precision floating-point number on [-π/4, π/4].
- [@stdlib/math-base/special/kernel-sin
][@stdlib/math/base/special/kernel-sin]: compute the sine of a double-precision floating-point number on [-π/4, π/4].
- [@stdlib/math-base/special/tan
][@stdlib/math/base/special/tan]: evaluate the tangent of a number.