We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
rempio2
[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]
Compute
x - nπ/2 = r
.
bash
npm install @stdlib/math-base-special-rempio2
javascript
var rempio2 = require( '@stdlib/math-base-special-rempio2' );
#### rempio2( x, y )
Computes x - nπ/2 = r
.
javascript
var y = [ 0.0, 0.0 ];
var n = rempio2( 128.0, y );
// returns 81
var y1 = y[ 0 ];
// returns ~0.765
var y2 = y[ 1 ];
// returns ~3.618e-17
When x
is NaN
or infinite, the function returns 0
and sets the elements of y
to NaN
.
javascript
var y = [ 0.0, 0.0 ];
var n = rempio2( NaN, y );
// returns 0
var y1 = y[ 0 ];
// returns NaN
var y2 = y[ 1 ];
// returns NaN
y = [ 0.0, 0.0 ];
n = rempio2( Infinity, y );
// returns 0
y1 = y[ 0 ];
// returns NaN
y2 = y[ 1 ];
// returns NaN
n
and stores the remainder r
as two numbers in y
, such that y[0]+y[1] = r
.
- For input values larger than 2^20*π/2
in magnitude, the function only returns the last three binary digits of n
and not the full result.
javascript
var linspace = require( '@stdlib/array-base-linspace' );
var rempio2 = require( '@stdlib/math-base-special-rempio2' );
var x = linspace( 0.0, 100.0, 100 );
var y = [ 0.0, 0.0 ];
var n;
var i;
for ( i = 0; i < x.length; i++ ) {
n = rempio2( x[ i ], y );
console.log( '%d - %dπ/2 = %d + %d', x[ i ], n, y[ 0 ], y[ 1 ] );
}
c
#include "stdlib/math/base/special/rempio2.h"
#### stdlib_base_rempio2( x, &rem1, &rem2 )
Computes x - nπ/2 = r
.
c
#include <stdint.h>
double rem1;
double rem2;
int32_t n = stdlib_base_rempio2( 4.0, &rem1, &rem2 );
The function accepts the following arguments:
- x: [in] double
input value.
- rem1: [out] double*
destination for first remainder number.
- rem2: [out] double*
destination for second remainder number.
c
int32_t stdlib_base_rempio2( const double x, double *rem1, double *rem2 );
n
and stores the remainder r
as two numbers in rem1
and rem2
, respectively, such that rem1+rem2 = r
.
c
#include "stdlib/math/base/special/rempio2.h"
#include <stdio.h>
#include <stdint.h>
#include <inttypes.h>
int main( void ) {
const double x[] = { 0.0, 1.0, 4.0, 128.0 };
double rem1;
double rem2;
int32_t n;
int i;
for ( i = 0; i < 4; i++ ) {
n = stdlib_base_rempio2( x[ i ], &rem1, &rem2 );
printf( "%lf - %"PRId32"π/2 = %lf + %lf\n", x[ i ], n, rem1, rem2 );
}
}