We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
sum-series
[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]
Compute the sum of an [infinite series][infinite-series].
bash
npm install @stdlib/math-base-tools-sum-series
javascript
var sumSeries = require( '@stdlib/math-base-tools-sum-series' );
#### sumSeries( generator[, options ] )
Computes the sum of the series given by the supplied generator
argument. generator
can be either an ES6 [Generator object][es6-generator] or a function which returns successive elements of the series at each invocation.
Using an ES6 [Generator object][es6-generator]:
javascript
var pow = require( '@stdlib/math-base-special-pow' );
var gen = geometricSeriesGenerator( 0.9 );
var out = sumSeries( gen );
// returns 10
function* geometricSeriesGenerator( x ) {
var exponent = 0;
while ( true ) {
yield pow( x, exponent );
exponent += 1;
}
}
Alternatively, one can use a closure to achieve the same goal:
javascript
var pow = require( '@stdlib/math-base-special-pow' );
var gen = geometricSeriesClosure( 0.9 );
var out = sumSeries( gen );
// returns 10
function geometricSeriesClosure( x ) {
var exponent = -1;
return gen;
function gen() {
exponent += 1;
return pow( x, exponent );
}
}
The function
accepts the following options
:
- maxTerms: integer denoting the maximum number of terms to be summed. Default: 1000000
.
- tolerance: number specifying the tolerance used to assess convergence. Default: 2.22e-16
.
- initialValue: number specifying the initial value of the returned sum. Default: 0
.
By default, the initial value of the sum is 0
. To choose a different one, use the initialValue
option.
javascript
var pow = require( '@stdlib/math-base-special-pow' );
var out = sumSeries( geometricSeriesClosure( 0.5 ), {
'initialValue': 1
});
// returns 3
function geometricSeriesClosure( x ) {
var exponent = -1;
return gen;
function gen() {
exponent += 1;
return pow( x, exponent );
}
}
To change the maximum number of terms to be summed, set the maxTerms
option.
javascript
var pow = require( '@stdlib/math-base-special-pow' );
// Note: infinite sum is 2
var out = sumSeries( geometricSeriesClosure( 0.5 ), {
'maxTerms': 10
});
// returns ~1.998
function geometricSeriesClosure( x ) {
var exponent = -1;
return gen;
function gen() {
exponent += 1;
return pow( x, exponent );
}
}
The default tolerance of 2.22e-16
used to assess convergence can be changed via the tolerance
option.
javascript
var pow = require( '@stdlib/math-base-special-pow' );
var out = sumSeries( geometricSeriesClosure( 0.5 ), {
'tolerance': 1e-3
});
// returns ~1.998
function geometricSeriesClosure( x ) {
var exponent = -1;
return gen;
function gen() {
exponent += 1;
return pow( x, exponent );
}
}
javascript
var log1p = require( '@stdlib/math-base-special-log1p' );
var sumSeries = require( '@stdlib/math-base-tools-sum-series' );
function* log1pSeries( x ) {
var mMult = -x;
var mProd = -1;
var k = 0;
while ( true ) {
mProd *= mMult;
k += 1;
yield ( mProd / k );
}
}
console.log( 'log1p(0.5) evaluated via math-log1p module: %d', log1p( 0.5 ) );
console.log( 'log1p(0.5) evaluated via infinite series expansion: %d', sumSeries( log1pSeries( 0.5 ) ) );