We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Cumulative Distribution Function
[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]
Wilcoxon signed rank test statistic [cumulative distribution function][cdf].
bash
npm install @stdlib/stats-base-dists-signrank-cdf
javascript
var cdf = require( '@stdlib/stats-base-dists-signrank-cdf' );
#### cdf( x, n )
Evaluates the [cumulative distribution function][cdf] of the Wilcoxon signed rank test statistic with n
observations.
javascript
var y = cdf( 7.0, 9 );
// returns ~0.037
y = cdf( 7.0, 6 );
// returns ~0.281
y = cdf( -1.0, 40 );
// returns 0.0
If provided NaN
as any argument, the function returns NaN
.
javascript
var y = cdf( NaN, 8 );
// returns NaN
y = cdf( 0.0, NaN );
// returns NaN
If provided x < 0
, the function returns NaN
.
javascript
var y = cdf( 2.0, -1.0 );
// returns NaN
If not provided a positive integer for n
, the function returns NaN
.
javascript
var y = cdf( 2.0, 0 );
// returns NaN
y = cdf( 2.0, -2 );
// returns NaN
y = cdf( 2.0, 8.9 );
// returns NaN
#### cdf.factory( n )
Returns a function for evaluating the [cumulative distribution function][cdf] of the Wilcoxon signed rank test statistic with n
observations.
javascript
var mycdf = cdf.factory( 8 );
var y = mycdf( 3.9 );
// returns ~0.027
y = mycdf( 17.0 );
// returns ~0.473
javascript
var ceil = require( '@stdlib/math-base-special-ceil' );
var randu = require( '@stdlib/random-base-randu' );
var cdf = require( '@stdlib/stats-base-dists-signrank-cdf' );
var n;
var x;
var y;
var i;
for ( i = 0; i < 10; i++ ) {
x = randu() * 30.0;
n = ceil( randu() * 30.0 );
y = cdf( x, n );
console.log( 'x: %d, n: %d, F(x;n): %d', x.toFixed( 4 ), n.toFixed( 4 ), y.toFixed( 4 ) );
}